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Recent empirical studies have demonstrated long-memory in the signs of orders to buy or sell in financial
marketdJ.-P. Bouchaud, Y. Gefen, M. Potters, and M. Wyart, Quant. Fin@ndg6(2004); F. Lillo and J. D.
Farmer Dyn. Syst. Appl8, 3 (2004]. We show how this can be caused by delays in market clearing. Under
the common practice of order splitting, large orders are broken up into pieces and executed incrementally. If
the size of such large orders is power-law distributed, this gives rise to power-law decaying autocorrelations in
the signs of executed orders. More specifically, we show that if the cumulative distribution of large orders of
volumev is proportional tov™® and the size of executed orders is constant, the autocorrelation of order signs
as a function of the lag is asymptotically proportional te~(*V. This is a long-memory process when
< 2. With a few caveats, this gives a good match to the data. A version of the model also shows long-memory
fluctuations in order execution rates, which may be relevant for explaining the long memory of price diffusion
rates.
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I. INTRODUCTION lation function of the time series of signs of orders that result
A random process is said to have long memory if it has a in immediate trades for the stock Shell. The autocorrelation

autocorrelation function that is not integrable. This happensiunction is well described by a power law decay over almost

for example, when the autocorrelation function decays asi'ré€ decades and a least squares fit to this gj8.53.

ymptotically as a power law of the fornT? with y<1. This | "€ fact thaty<'1 implies that this is a long-memory pro- -
is important because it implies that values from the distanf€SS: I-€., its autocorrelation function decays so slowly that it
past can have a significant effect on the present, that thig not integrable. .Th|s IS important b‘?ca.‘!se it implies that
stochastic process lacks a typical time scale, and imp“egalues from the distant past have a significant effect on the

e . . resent. A diffusion process built from long-memory incre-
anomalous diffusion in a stochastic process whose incre? P 9 y

ments have long memory. Examples of long-memor ro_ments has a varianae? that grows in time agr?(7)~ 7",
cesses and anorgr]walous di¥fusion hgve been ogbserved )i/n F;na\ﬁvhere is called the Hurst exponent. Forcg<1, H=1
—yy/2. For a normal diffusion procedd=1/2, butwhenH

physical, biological, and economic systems ranging from tr.% ;5 yhe yarjance grows faster thaff?, which is called
bulence[1] to chaotic dynamics due to flights and trapping nomalous diffusion. Another important consequence is that
[2], dynamics of aggregates of amphiphilic molecUle8],  giatistical averages converge slowly, e.g., the mean of a
and DNA sequencef3,4]. In finance the volatility, roughly  quantity that displays anomalous diffusion converges as
defined as the diffusion rate of price fluctuations, is known tor-(1-H) "\yhereT is the sample size. The signs of orders in the
be a long-memory proce$5,6]. In this paper we analyze a | SE have been shown to pass tests for long-memory with a
mechanism for creating a long-memory process, based Ofigh degree of statistical significanfeL].

converting a static power-law distribution into a random pro-  From an economic point of view this is important because

cess with a power-law autocorrelation function. Other ex-of jts implications for market efficiency. All other things be-
amples of stochastic processes relating power laws to long

memory have been given by Mandelbfat (analyzed by
Tagqu and Levy8]), and in the context of DNA sequences 107¢
by Buldyrevet al.[9]. i
Recently a new long-memory property of the order flow
in a financial market was independently observed by
Bouchaudet al. in the Paris Stock Exchand&0] and Lillo
and Farmer in the London Stock Exchan@eSE) [11].
These studies have shown that there is a remarkable persis-
tence in buying vs selling. Labeling the signs of trading or-
ders as +1 according to whether they are to buy or to sell, the T T T
autocorrelation of observed order signs is strongly positive, ! 10 1ng (evem;o 10
asymptotically decaying roughly as a power law, where
y=0.6. Such positive autocorrelations can be measured at FIG. 1. Autocorrelation function of the time series of signs of
statistically significant levels over time lags as long as twoorders that result in immediate trades for the stock Shell traded at
weeks. the London Stock Exchange in the period May 2000-December
For example, in Fig. 1 we show the empirical autocorre-2002, a total of 5.& 10° events.

autocorrelation
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ing equal, since buy orders tend to drive the price up and seflimulation results. We then describe the fixsld model,
orders tend to drive them down, this would imply that it waswhich is less realistic, but has the important advantage of
possible to make profits using a simple linear model to prebeing simpler, allowing us to obtain analytic results. Because
dict future price moments. In order to prevent this the markebf the simple nature of these results, they apply equally well
has to make substantial compensating adjustment® the\ model.
[10,11,13. The difficulty of making such adjustments per-  We first describe th& model. LetN(t) be the number of
fectly may have important implications about the origin of hidden orders at time=1,2,...,T. At each timet generate a
long memory in the volatility of prices. new hidden order with probability @\ <1 if N(t)>0, or

In this paper we hypothesize that the cause of the longprobability one ifN(t)=0. Assign each new hidden order a
memory of order flow is a delay in market clearing. To makerandom sigrs; and an initial sizey;(t")=LAv, wheret” is the
this clearer, imagine that a large investor such as Warrefime when the hidden order is created, and1,2..., is
Buffet decides to buy ten million shares of a company. It isgrawn from a Pareto distributio(L)=al ™D, with «
unrealistic for him to simply state his demand to the world~ g The random variables ands are IID} At each time
and let the market do its job. There are unlikely to be suffi-siept an existing hidden orderis chosen at random with
cient sellers present, and even if there were, revealing a larggiform probability, and a voluméu of that order is re-
order tends to push the price up. Instead he keeps his intefoyed, so thab;(t+1)=v;(t)—Av. This generates a revealed
tions as secret as possible and trades the order incrementallyyer of volumeAy and signx.=s. A hidden ordeii is re-
over an extended period of time, possibly through interme;,oved ifv;(t+1)=0. Thus, the number of hidden ordéi&)

diaries. In a study of this phenomenon, about a third of thy,ates in time, depending on fluctuations in arrival and
dollar value of such institutional trades took more than a

week to complet¢14,15. This conflicts with standard neo- The fixedN model is the same, except that the number of
classical economic models, which assume market clearing;iyqen ordersN is kept fixed. Thus, if a hidden order is

i.e., that the price always adjusts so that supply and demang,oved it is immediately replaced by a new one with a
are evenly matched. The fact that large orders are kept secrgf, om sign and a new size.

and executed incrementally implies that at any given time  The main result of this paper is the calculation of the
there may be a substantial imbalance of buyers and sellerg, s5correlation function of revealed order siggsfor the
which can be interpreted as a failure of market clearing. Supgyaq N model. We show in the next section that the tail of
ply and demand do not match, and the market fails to clea,q 5 tocorrelation function asymptotically scalesrds™.
Effective market clearing is delayed, by variable amount§yhile varying N affects the shape of the autocorrelation
that depend on fluctuations in the size and signs of unregncrion for small, providing « is held fixed, it does not
vealed orders. affect its asymptotic scaling. Even thoubfft) varies in the

We propose a simple mode! to explain the_ long memory, model, the asymptotic behavior is independenii(j, and
of order flow based on delays in market clearing. We POStUL, the asymptotic behavior of the autocorrelation function is
late that unrevealetidden ordersare distributed according

. . . the same. This is particularly convenient because it allows us
to a power law. These are broken up into pieces, which w

) k iction in t f I ik
call revealed ordersthat are submitted at a steady rate. Wesoe(r?a\))e a prediction in terms of observable quantitise

show that this leads to long memory in order flow, yielding a

model consistent with empirical observations. The main re-

sult is an analytic computation relating the exponent of the !l ANALYTIC COMPUTATION FOR FIXED N MODEL
power law of the volume distribution of hidden orders to the  gacause the hidden order arrival process is IID, it is pos-
rate of decay of the long-memory process characterizing resipje to compute the autocorrelation of the fixdmodel

vealed orders. analytically. The basic idea of the computation is to under-

The paper is organized as follows. In Sec. Il we define theanq the behavior of the autocorrelation conditioned_on
two models that we study here, which we call the fix¢d

model and the. model. In Sec. lll we analytically compute

the autocorrelation function of revealed orders for the fixed 'In the language of extreme value theday], the Pareto distri-
N model in terms of the parameters, and test it against simuaution is just one example of a power law. A distributit) is a
lation results. Section IV discusses the properties ofXhe Power law with tail exponent: if there exists a slowly varying
model, showing that it displays interesting temporal fluctuafunction g(x) such that lim_..f(x)g(x) =Kx™, whereK and a are
tions. Section V compares the predictions to empirical evijositive cons_tants. A functiog(x) is a slowly varying function if
dence and discusses the assumptions of the model in tf& anyt>0 lim,_..g(tx)/g(x)=1. A common example of a slowly

context of real markets. In Sec. VI we discuss the possibl¥@¥ing function is Inx, so in this sense the functioainx is a
broader implications power law. Thus, the term “power law” refers not to a specific

distribution, but to an equivalence class of distributions with the
same asymptotic scaling properties. It is clear from the calculations
Il. DESCRIPTION OF MODELS leading up to our main resull?) that it is not necessary to assume
that the distribution of volumes is strictly Pareto distributed; any
We develop a model with two variations, which we call power law distributionp(L) with a given tail exponent will give
the A model and the fixedN model. We first describe the  the same asymptotic scaling for the autocorrelation function of re-
model, which is more realistic, but for which we have only vealed orders.
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the initial length of the hidden order in units of the revealed The conditional probability(7|L) can be written

order sizeAv, and then combine the results for different

values ofL. w(L, 7)p, (6)
We first begin by giving a simple intuitive argument for . . . . .

the asymptotic scaling. The probability at any instant of timeW_hereV_V(L' 7 is t_he probab|I_|ty that a given h|dde_n o_rder IS

that a revealed order comes from a hidden order of lehgth Still active after timer, andp is the probability that it will be

is Q(L)<Lp(L). This revealed order contributes to inducing sglected for execution assuming it is still active. By assump-

a positive autocorrelation at lagonly if the revealed order tion p:1/N. . . .

steps ahead comes from the same hidden order. In other Computingw(L,7) is more comphcated: Les.be the

words, in order to contribute to the autocorrelation functionnUmber of revealed orders drawn from a given hidden order

at lag, a hidden order must be of length>Ar, whereA is ~ during ther—1 timesteps between tinteand timet+ 7, and

a constant. Summing over all hidden orders gives an autd€t P~1(S<k) be the probability thas is less than a given

correlationp(7) ~ [ Q(L) ~ @D which is the main result valuek. Thg;, for a h|d(jen o'rder thqt has Igngtat timet,

of Eq. (17). In the remainder of this section, we present athe probability that it still exists at time+ 7 is P,_y(s<1).

more detailed calculation, which also allows us to computd 0 @ hidden order with original length, | is uniformly

the correct prefactor. distributed with probability 1L over the values 1,.,L.
Thus we can express(L,7) as a sum of probabilities, one
A. Autocorrelation in probabilistic terms for each possible value of

Under the convention that the signs of the revealed orders 1
are x,=*1, because of the symmetry between buying and  w(L,7)==[P,_;(s<L-1)+P,_(s<L-2)+ -
selling E[x]=0 andE[xf]:l, whereE denotes the expecta- L
tion. Therefore the autocorrelation is simglyr) = E[ XX; .. +P,_y(s<1)]. 7)

We can rewrite this as o
The probabilitiesP,_;(s<k) can be expressed as sums of

_ binomial probabilities, corresponding to the possible se-
ElxXe] = EQ(L)E[XtX“T|L]’ @) quences with which a given hidden order generates re-
B vealed orders:

where E[xx,|L] is conditioned on the hidden order that 1
generated, having lengthL. Q(L) is the probability that a T— e
revealed order drawn at random comes from a hidden order Prai(s<k = 2_: ( h )ph(l -p)i . (8)
of lengthL. Let q(7|L) be the probability that revealed or- h=0
ders at times and timet+7 came from the same hidden Therefore,
order, given that it has original length BecauseE[XX;: ]

=0 if x, and x,, came from different hidden orders, and p"_2 \ (-1 h ih
E[XXu,]=1 if they came from the same hidden order, the q(rlL) = L hoPA-pT 9)
conditional expectation can be rewritten J=1 h=0

E[tht+7'|L] = q(T| L)! (2)

S . B. de Moivre—Laplace approximation
which implies _ .
The autocorrelation can now be computed using &j.

- However, since the sums of binomial coefficients are difficult
p(7) = EQ(L)QML)' ®) to manage we will make use of the de Moivre—Laplace ap-
h proximation[17]. For npg>1 one can approximate
To computeQ, we note that the number of revealed orders
coming from hidden orders of length is proportional to N\ ok oxd - (k=np)® (10
Lp(L), wherep(L) is the probability that a hidden order has k pPq = \V27mpq 2npq /°
lengthL. To computeQ(L) we must properly normalize this
by summing ovetL, As a consequence the sum of consecutive terms of a bino-
mial distribution can be approximated as
__LpL)
Q== @ 2 n 1] [ky-np+1/2
> Lp(L) > ( )pkq”‘k= —[erf(%>
(=1 kek, \K 2 V2npq
is qi ki—np-1/2
This gives _ erf( 1 ’ p )} (11)
L2 \V2npg
==2,Lq(nL)p(L), 5 . .
p(7) Lgl q(rbp(L) ®) where erf is the error function.

- By converting the sum to an integral, and lettisrgr—1,
wherelL is the average value df. Eq. (9) becomes
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p’ j—sp+1/2
s+1L)=_- erfl “=——=
a1 2'—121[ <\"23p(1—p))

-sp—-1/2

- erf(—_)]
V2sp(1-p)

P L-2+1/2 [erf( X—sp+ 1/2)
2L 1/2 \’23“1 - p)
-sp-1/2

- erf(=) ] dx
v2sp(1-p)

(12

For the approximation of the sum by the integral we use

SPf() =213 (x)dx. Performing the last integral gives
2

P _exi_ (sp

2L

2 ——
m) ) \E*’S“l P
X(ex

(-1 —sp)z))
+(sp- 1)erf<

q(s+1JL) =

2sp(1-p)
1-sp )
V2sp(l-p)
1/2
+(L- 2)erf(%)
V2sp(1 -p)

1-L+sp )
V2sp(1-p) '

The sum ovell in Eq. (5) can be approximated by the
integral

+(1+sp- L)erf( (13

PILL

E— (14)
L

p(7) = f q(7iL)
1+1/2

Finally, we need to translate the domain of validity of the

PHYSICAL REVIEW E 71, 066122(2005

10"

10°F

time lag

FIG. 2. (Color online) Autocorrelation of the fixedN model
with @=1.5, for N=1 (green circles N=5 (red squares and N
=50 (blue diamondg based on a simulation witfi=1C°. This is
compared to the asymptotic predictions of HG7), shown as
dashed black lines.

p(L) = (16)

a
La+l 1

wherea>1 is the tail exponent. In this case the integral of
Eq. (14) cannot be performed analytically. We can, however,
give an analytical asymptotic expansion of the integtd).
The calculations detailed in the Appendix make use of the
saddle point approximation. The result is that the leading
term of the asymptotic expansion pf7) is given by the
terms depending on erf functions in E4.3), and the auto-
correlation function decays asymptotically as

a-2
7D,

p(7) ~ (17

de Moivre—Laplace approximation into more relevant terms.

The conditionnpg>1 in Eq. (9) becomes(7—1)p(1-p)
>1. This leads to the condition

2

N-1

> -1=N, (15)

This result indicates that the autocorrelation function decays
as a power law with exponent=«—1. The number of hid-
den orders affects the prefactor, but does not affect the scal-
ing exponent. Interestingly, whem=2 the prefactor is inde-
pendent ofN. Whena <2 it is a decreasing function d,

i.e., the approximation is valid as long as the lag is muchand whena>2 it is an increasing function dfl. The value
greater than the number of hidden orders. Since the number=2 separates the regime where the size of hidden orders
of hidden orders is fixed, the approximation is always validhas infinite variance from the regime where the variance is

for sufficiently larger.

finite 2

We have tested these calculations for the simple case in Figure 2 compares the autocorrelation function predicted

which all hidden orders have the same slzg i.e., p(L)
=48(L-Lg), whered is the Dirac delta function. This implies
p(7)=q(7|Lo), so that Eq(13) gives a closed form expres-

by Eq. (17) to a simulation fora=1.5,N=1, N=5, andN
=50. For large values of the match is excellent, both in
terms of the slope and the size of the prefactor. Rerl the

sion for the autocorrelation function. As expected, the ap{rediction matches the simulation across the entire range of

proximation always agrees very well for large valuesrof
The agreement is also good for small values ofhenN is
small andL, is sufficiently large.

C. Pareto distribution

7. As expected, wheill increases the prediction deviates at
small 7, but still matches for large. We have also checked
the consequences of varying and find that the prefactor
behaves as predicted by E4.7).

We now consider the more realistic case that the hidden?Note that Buldyrewet al.[9] found a similar formula in the con-

order sizeL has a Pareto distribution

text of structure in DNA sequences.
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Note that we used=10° samples to simulate the model v °
and compare to theory. This is because dorl.5 this is a
strongly long-memory process, and the convergence is ex ,
tremely slow. This will become an issue later on when we v 2

v: I
[¢]
(o)

500

>

test the model against real data—even for very large sampl¢s
sizes the error bars remain quite large.

50 100

IV. LIQUIDITY FLUCTUATIONS OF THE A MODEL

>

We now return to discuss themodel. As a reminder, this
differs from the fixedN model analyzed so far in that the
number of bufferaN(t) is not fixed. Instead, new buffers are
added with probabilityA when N(t)>0, and probability 1
otherwise. For the mean dfi(t) to remain bounded it is v — _—
necessary that the rate of creation of new orders equal th v / /A
rate at which they are removed. This implies the model hasé¢ -4 o—’~————2
critical threshold whereE[N(t)]— . This can be simply ' ' ' ' '
computed as follows: Let(t) be the total number of future 0.20 0'251 0-30 0.35 040
revealed orders stored in all hidden orders at timee.,
n(t)= EN(t v;(t)/Av. The average rate of change mf) is FIG. 3. (Color online) The average number of hidden orders as

_ a function of the creation parameterfor «=1.3 (red downward
E[n(t+1) -n(t)]=R(n(t))L-1. pointing triangley a=1.5(black circleg, anda=1.7 (green upward

pointing triangles The dashed lines are the corresponding pre-
The first term represents addition of a new hidden order, a”Gmted critical values\,=(a—1)/ .

the second term the removal of a revealed order at every time

step. The creation rateR(n(t))=N when n(t)>0 and an order. One of the interesting properties of prices of eco-
R(n(t))=1 otherwise. The average length of a new hiddernomic time series is that they display what is commonly
order is L, which under the Pareto assumption is called clustered volatility i.e., the diffusion rate of price

changes is strongly autocorrelated in time, and in fact is a
=2(-iL(L)=a/(1-a). In the limit whereE[n(t)] is large it is Iong—?nemory pro%gsﬁ'),G]. It has recently been shown that

a good approximation to say thaft) is never zero, so that hg'is related to fluctuations in liquidity, in this case defined
R(n(t))=\. Setting E[n(t+1)-n(t)]=0 implies the critical 55 the price response to an order of a given §i#. The

mean number of active buffer:
10

5

I
\

<
AN

valueA is fact that this kind of model predicts long-memory fluctua-
— tions in another aspect of liquiditithe time to execute an

A=1L=(a-Dla=7la. (18)  orde) may be related to the explanation of clustered volatil-

For the last equality we have made use of the fact flddes ity.

not depend orN in Eq. (17), which indicates thaty=a-1 V. TESTING THE PREDICTIONS

applies equally well to the. model as long as <\. (we ) .

have verified this in simulationsWe also confirm the depen- ~ Unfortunately, data comparing hidden orders and revealed

dence of the critical behavior om in Fig. 3. orders are not widely available, which complicates the prob-

One of the interesting features of themodel is that it O 4 e . A A B

generates long-memory fluctuations in the number of active
hidden orders. This is caused by positive feedback betweel
the number of orders and the accumulation rate. This is be:
cause the average rate at which hidden orders are executed
1/N(t). Thus whenN(t) is larger than average, the rate at
which active hidden orders are removed is lower than aver-

age, which tends to cau$t) to increase above its average 2 | lambda=0.33
value. Such an increase is triggered by random fluctuations s
in which one or more particularly large orders are created; o lambda=0.2

when these orders are finally removeéd{f) decreases\(t)
thus makes large and persistent fluctuations. The autocorre
lation function has an asymptotic power law decay of the
form py(7) ~ 77 as shown in Fig. 4. From simulations, we T
flnd that y=a- 1. 1 10 100lag 1000 10000
For this model fluctuations in the number of hidden orders

correspond to fluctuations in the time to execute an order. In FIG. 4. (Color online) Autocorrelation function of the number
economics this is one aspect of what is callaglidity, of active hidden orders in themodel for four different values of,
which is a general term referring to the ease of execution o&s shown in the inset. The dashed black lines have siepk
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]

lem of testing this model. The only data set we know of that 10 T
includes the kind of data that is needed for a proper test was i
used by Chan and Lakonishfk4,15 to study the execution g
of customer orders at large brokerage firms. Unfortunately, 102k
they did not fit functional forms to the size distributions or g
test for long memory, and we have not been able to obtain % 107
their data. Their study does make it clear that order splitting 2 ni
is very common, and suggests that the time scale on which g

o off-book q
¢ on-book E
o all E

order splitting occurs is sufficiently long to match the auto- 10’5;— Hoen, 4
correlations in order flow._ _ _ o \ %’%a

We compare the predictions of the model to the data in 107 3 i\“%
two different ways. The first is based on computation of the P S R VY T R R ]
scaling exponents, described in Sec. V B, and the second is 10t 107 107 10" 10° . 10 100 100 10" 10’

based on the properties of run length, described in Sec. V C. .
Before presenting the first test, we must first review the mar- 10°¢ i
ket structure.

A. Market structure and order distributions 10

Although we have no transaction data with direct infor-
mation about hidden orders, we can perform an indirect test g
of the scaling relations predicted by the model which takes 10k
advantage of the market structure used in the New York :

Stock Exchange and the London Stock Exchange. They both 10°F ‘\’% W —
employ two parallel markets which provide alternative meth- g v o ]
ods of trading, called the on-book or “downstairs” market, 1078 gl sl ol 8l ol

and the off-book or “upstairs” market. In the LSE orders in  (b) 10 10 10 10 10 10 10 10

the on-book market are placed publicly but anonymously and o _
execution is completely automated. The off-book market, in FIG: 5. Volume distributions of off-book tradesircles, on-

contrast, operates through a bilateral exchange mechanisfi?°k tradesdiamonds, and the aggregate of bofhquares In (a)

via telephone calls or direct contact of the trading partieswe show this for a collection of 20 different stocks, normalizing the
The anonymous nature of the on-book market facilitates oryolume of each by the mean volume before combining, wheltas
shows unnormalized valugi share$ for the stock Astrazeneca.

.der splitting, and it is clear that it i.S acommon prf”“?“ce- ThiSThe number of trades in each case is<0P (aggregate on book
is also supported by the fact that in our data set it is pos&blg 7% 10 aggregate off book, 89 1C° (AZN on book, and 2.8

to track the on-book orders for individual trading institutions, . 1 5 (AZN off book). The dashed black lines have the slope found

and t_he Iorjg-mer_nory property of order flow is evidgnt e_Venby the Hill estimatorand are shown for the largest one percent of
for single institutions[11]. In contrast, off-book trading is e data

based on personal relationships and order splitting is be-
lieved to be less frequent. This is because a series of ordersodel match the empirical observations of order splitting. To
of the same sign tend to gradually change the price in ahis end we select 20 highly capitalized stocks traded at the
direction that is unfavorable to the other pafiy,15. London Stock Exchange in the period May 2000—December
Thus one might make the hypothesis that in the off-book2002. The stocks we analyzed are Astrazen@@N), Bae
market people just submit their orders rather than hidingSystems(BA), Baa (BAA), BHP Billiton (BLT), Boots
them, while in the on-book market they hide their true ordersGroup (BOOT), British Sky Broadcasting GrougBSY),
and execute them through a series of revealed orders. Whileiageo(DGE), Gus(GUS), Hilton Group(HG), Lloyds Tsb
there is some truth in this hypothesis, it is not strictly true.Group (LLOY), Prudential (PRU), Pearson(PSON, Rio
When we examine sequences of off-book trades for indiTinto (RIO), Rentokil Initial (RTO), Reuters GrougRTR),
vidual institutions, we often see long runs of trades of theSainsbury(SBRY), Shell Transport & Trading CASHEL),
same sign, suggesting that order splitting is also fairly comTesco (TSCO), Vodafone Group(VOD), and WPP Group
mon in the off-book market. Even though order splitting is (WPP. The number of trades for the combined group of
not common when trading with the same party, it is still stocks is 16.% 10%; of these 11x 1(P are on-book trades and
possible to split a large order and trade it in the off-book5.7x 10° are off-book trades.
market with many different parties. Thus the transactions in In Fig. 5 we show the empirical probability distributions
the off-book market have already undergone some ordefor the volume of trades in both the off-book and on-book
splitting, and it is not clear how well the distribution of trans- markets in the London Stock Exchange. We show this for an
actions corresponds to that for hidden orders. aggregate of 20 heavily traded stocks and for the single stock
Despite the caveats mentioned above, we will press forAstrazeneca, which is typical of the stocks in the sample.
ward with the hypothesis that off-book trades can be used aBhis makes it clear that the tails die out more slowly in the
a proxy for hidden orders, and see how the predictions of ouoff-book market. The largest trade sizes in the off-book mar-
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FIG. 6. Scaling exponenta for the twenty stocks we study FIG. 7. The scaling exponenisfor the twenty stocks we study

here, based on the hypothesis that the Iarg?st one percent of ﬂﬁ%re[with the hypothesi®(V>x) ~ x], plotted against the expo-
tradesV are described by the relatidt(V>x) ~x"*. The stocks are  ant, of the autocorrelation functiofunder the hypothesig(7)

arranged along the axis in alphabetical order. The circles refer to _ 77]. The error bars shown are the 95% confidence intervals of
off-book trades, the diamonds to on-book and the squares to thge Hij estimator, under the assumptions of 1D errors and perfect
aggregate of both. For comparison we draw a dashed linefor paretg scaling across the entire rangevoBoth assumptions are
=1.5. highly optimistic.

ket are more than a factor of 10 larger than those in the B. Predicted vs actual values ofy

on-book market; for Astrazeneca, for example, the largest Taking the off-book market as a crude proxy for hidden
orders are roughly four million shares in the off-book marketorders, we test the model by comparifig -1 as predicted
vs 200 thousand in the on-book market. Alternatively, toby Ed. (16) to the value ofy measured directly from the
measure the decay of the tails more quantitatively, we asorder signs. The scaling exponents measured by comput-
sume the asymptotic relation for volumé is P(V>x)  ing the Hurst exponent of the series of market order signs for
~x and estimater using a Hill estimator applied to the ©ach stock using the DFA methgd], and making use of the
largest one percent of the ddtt9]. For the aggregate data 'elation y=2(1~H). (This is much more accurate than com-
set this givesx=1.59 for the off-book datag=2.90 for the Puting the autocorrelation function directlyVe compare the
on-book data, andv=1.64 for the combined dafaSimilar E)hredmtelq and actual tvalg(tas n F{g. ! Tlh$ av?ragi valpe of
Ry - . the scaling exponent of the autocorrelation functionyis
\ééh-:-ise a;seigg]eplc:;i écsw ;r:(:;vf;leisotgcsksf,ossozb;\)/\él’|2 F'g'=0.5710.05. This can be comparedAeitherﬁzteo.74io.23
=4.2+1.5 for on-book, and=1.36+0.10 overall. These re- based on the average valueafor to y=0.59 based on the

X X . ~ .~ .« for the aggregate distribution. In either case the agreement
sults are consistent with the hypothesis that order splitting i%s well within the error bars(The error bars, which are based
more common in the on-book market than it is in the off- ' .

book market. However. thev also suaaest that the separatich! the standard error of the mean of the 20 stock sample, are
between the. stvles of,trad)iln in th(gage WO marketspis o ghly optimistic due to correlations within the sample and

Y 9 ; ossibly also due to skewness and systematic bias of the Hill
absolute. They both show an approximate power-law deca

. L . X stimates.
in their tails, although this decay is much steeper for the As a stronger test, one might hope that variations in mea-
on-book market.

Finallv Fio. 6 shows that the exponent for the Volumesured values o might predict variations in measured val-
distributi)é)n ogf.the acareaate of the orl?- and off-book trades ic€S ofy. The model fails this test. Performing a regression of
goreg redicted vs actual values gives a statistically insignificant,

systematically sma[ler_ than the exponent for eithgr of the lightly negative slope. There are several possible explana-
by themselves. This is caused by the aggregation of tW?|ons for this: First, as we have already discussed, the off-

Dropertes tends o faien the ais. It ndicates that one shoufjoK 4212 may be a poor proxy for hidden orders. Second,

be very careful in aggregating diétributio‘hs e sample errors are very large, pgrtlcglarly for measuring
' a. The errors bars we have shown tein Fig. 7 are the 95%

confidence intervals of the Hill estimator under the assump-

3The results for the combined data set are in rough agreement witon that the data are 11D and that the top one percent of the
those first reported for the NYSE and NASDAQ by Gopikrishean Values have converged to a perfect Pareto distribution. This
al. [20] and for the LSE and Paris by Gabak al. [21]. is clearly far too optimistic. This can be seen by breaking the

“When power-law distributions are combined the one with thedata into subsamples; the variation from year to year is much
lowest tail exponent determines the tail exponent of the aggregatéarger than the error bars given by the Hill estimator. Even
For a finite sample, however, there are often slow convergence ethough our samples are large, the errors are still large be-
fects as a function of sample size that can alter this conclusion. cause both volume and order signs are long-memory pro-
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o oTrTTTT TorrTTTn we show the autocorrelation function of the sign of market
1 orders for the stock Astrazenet®ZN) and compare it with
the autocorrelation of a simulation of the two models. The
parameters arfl=24 anda=1.63 for the fixed\ model and
N=21.1,0#=1.63, anch =0.38 for thex model. These param-
eters were chosen to give a best fit to the autocorrelation
function of the real data. Both models are able to capture the
asymptotic behavior of the autocorrelation function, but the
fixed N model clearly underestimates the autocorrelation
function for small lags. We can get a more detailed test by
comparing the run length distribution of the models and the
data, as shown in panéb) of Fig. 8. The figure shows that
the A model is able to describe the run length distribution,
whereas the fixed\ model underestimate the run length
probability for long runs. Tha model appears to be a better
candidate for describing real order flow.

autocorrelation

D. Review of assumptions

Below we give a brief discussion of the assumptions of
the model, as well as the circumstances under which this
might alter the basic conclusions of the model.

Distribution of hidden ordersThis has already been dis-
cussed in some detail above. Here we want to add that we
have not addressed the possible cause of the power law dis-
tribution of hidden orders. One possibilitpriginally sug-
gested by Levy and Solomon and developed by Gabgat.
[23-25) is that the hidden order size distribution is in some
way related to the power law distribution of the size of hold-
(b) run length ings of the largest market participants.

IID hidden order arrival Strong autocorrelations in hid-

FIG. 8. (Color online) (a) Autocorrelation function of the mar- den order size or hidden order signs could affgcparticu-
ket order sign for the stock Astrazenetdack line compared with  larly if these were strong enough to be long memory.
the autocorrelation function of a numerical simulation of the fixed  Distribution of revealed orderdn reality, revealed orders
N model(red filled circles, parametef$=24 ande=1.63 and of  do not have constant size. If their distribution is sufficiently
the A model (empty blue circles, parameters=1.63 and\=0.38  thin tailed we think the model should still be valid. Power-
which implies an average value dbf=21.1). (b) Probability distri- law tails, however, might affecy.

bution of the run length for real data and simulations of the model. Aggregation of ordersin reality, there is a limited number

probability

The symbols and parameters are the same as in ganel of brokerage firms, and when they receive hidden orders
with opposite signs within a sufficiently short period of time,
cessed11,27, and averages generally convergeTas™, they may cross such orders internally before they execute the

whereH=~=0.75 in both cases. In addition, the measured valremainder externally. This will reduce the amount of unex-
ues of e have larger errors than those pfdue to a strong ecuted volume and improve market clearing. In our model it
tendency of the volume to trend upward, an effect that is nohas the potential to change the effective valueNofHow-
easily removed by simple normalization. Gabaixal. have  ever, because of the independence of the asymptotic scaling
conjectured that the exponeatfor the volume distribution behavior onN, we do not think this will affecty.
has a universal value=3/2; if true, this would imply that Feedback between order execution and order generation.
deviations from that value are purely statistical fluctuationsin our model we do not worry about whether revealed orders
Finally, it is of course possible that our model is wrong, dueare actually executed. In reality many revealed orders may
to violations of the assumptions of the model. We list somenever be executed. In this case there may be feedback ef-
of the possible problems in Sec. V D. fects, i.e., if an order is not executed the hidden order size is
not decreased, and consequently may result in the generation
of additional revealed orders when the agent tries again. We
cannot say with certainty that such effects are not important.
Another test for comparing the models to data concern$lowever, one piece of relevant evidence is that within sta-
the distribution of run lengths. A run is a series of revealedtistical error the same scaling is observed for market orders,
orders that are all of the same sign. In Fig. 8 we compare thimit orders, and cancellatiorfd1]. Since market orders are
run length distribution of the real order flow with a simula- by definition executed immediately, this suggests that such
tion of both the fixedN model and the. model. In panela)  feedback effects are of minor importance.

C. Run length
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VI. DISCUSSION size L has a Pareto distribution of E@l6). We split the
ci)?tegral of Eq.(14) in three parts and we sbEp(1-p).

We have presented and solved a rather idealized model The first contribution is

the long-memory of order flow which was designed to yield
tractable results. As detailed in the preceding section, many “ pa \/E . (ps—1)2
of its assumptions are not strictly true. At the very least, —J — —\'bsexp<— )dL. (A1)
though, it illustrates how two apparently disparate phenom- s2LLet Y 2bs

ena may be linked together, and makes quantitative predicl—.
tions about their relationship. Because we lack the proper

his can be calculated explicitly. It is

data to test the model, we have used an imperfect proxy to p [2 — (ps— 1)

test the model. The model passes this test. However, it would -— —\’bsexp<— —> (A2)
be nice to do a more definitive test, based on a data set that 2L ' T Zbs

more closely characterizes the dichotomy between hiddep,.: :

and revealed orders. Even if the model is not strictly true, the?l hich asymptotically goes as

model could potentially be extended to include more realistic - ps

assumptions, such as a nontrivial distribution of revealed or- —Vsexp| - 21-p))° (A3)
der sizes.

The long-memory of order signs is interesting for its own This decay is very fast due to the exponential term.
sake, but it may also have more profound effects on other The second contribution is
aspects of the market. The persistent autocorrelation function 5
. . e . (L-1-sp
associated with a long-memory process implies a high de- exp - —— 2
gree of predictability by just constructing a simple linear pa E\st 2bs
oL V7 312

time series modelsee Refs[10,11]). Since buy orders tend dL. (A4)

to generate a positive price response, and sell orders tend to

generate a negative price response, all other things beinbhis integral cannot be computed analytically. In order to get
equal this would translate into easily exploitable predictabldts asymptotic behavior for large(i.e., larger) we make use
movements in prices. In order to prevent this from happenef the saddle point approximatid6]. To have an idea of
ing, other features of the market have to adjust to compenthe approximation let us consider the case in which one has
sate. Such features include the size of buy vs sell orders, thte calculate the asymptotic behavior of an integral of the type
volume of unexecuted orders at the best prices, and many b
other aspects of the markgt0,11,13. Market participants f dx Vfe (A5)
do not behave out of philanthropic motives; presumably

these effects all come about due to the application of profit-

making strategies. It is not at all obvious what these stratefor large values oN. If there exists a point, in (a,b) which
gies are, and how they combine to eliminate this inefficiencyis a minimum forf(x), then we can expantix) aroundx,,
The market response to the long-memory of order flow is aryielding

interesting example of a self-organized collective phenom-

enon. It may be one of the causes of other important proper- N exp{N(f(xO) + lf”(xo)(x— XO)Z)] . (A6)
ties of prices, such as the long-memory in their diffusion 2

rate. We have demonstrated that thenodel, which allows o

fluctuations in the number of hidden orders, automaticallyarld we can compute the Gaussian integral
generates fluctuations in liquidity. This is known to affect b o
price diffusion rateg18]. The independence on the number f dx &0 = 4/ o exNf(xp)]. (A7)
of hidden orders, which was not obvious to us before doing a (%)

the calculation, is a convenient property of our result thatrhe method can be applied also when the integral is not of
makes it possible to test the model based on information thafo torm (A5), given that the integrand can be written as

can be feasibly gathered. This is thus a falsifiable model. expf(x,N)). In our case the integral in EqA4) can be
rewritten as

La+1

a
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| 1
\Zwbsexp<—> (sp~(e*Y), (A9)

APPENDIX 4bs

In this appendix we evaluate the asymptotic behavior ofand by putting also the prefactor we get for the second con-
the autocorrelatiop(7) of Eq. (14) when the hidden order tribution

066122-9



LILLO, MIKE, AND FARMER PHYSICAL REVIEW E 71, 066122(2005

1 1 Finally asymptotic behavior of the integral in EGA12),
-1p(l- — T~ —, Al10 i
(a=21)p( p)eXP<4bs>(Sp) = (A10) e,
Thus the second contribution gives a power law behavior but
with an exponentr rather thana—1.

The third contribution is the one depending on the three
erf functions

©

Ef (L—l—ps)erf(
32

1-ps L—1—ps) 1
V2bs' \2bs LT

(A14)
* 1-s 1/2 +s
p—i (sp- 1)erf< fp) +(L- 2)erf< — p)
2L J312 v2bs V2bs It is convenient to perform first an integration by parts ob-
1-L+sp taining
+(1+s —L)erf(—)dL. All
(1+sp 2bsp (Al11)
After some algebraic manipulations we can rewrite this term | = i( L 1+ ps>erf< 1251 L —1;ps) )
as L\l -« a \’2bS \”2bs 3/2
- - + “1 L 1+ps 2
M(L—z) or 1205\ 4 o Y2*sP _f _a( .\ p) 2
2a a-1 \2bs \r@ sl \1-a o Vary2bs
pla-1) [~ (1—ps L—1—ps> 1 p( (L—x—ps)2>
+ L-1-pyerf ,— dL, Xexp - ———— |dL. (A15)

(A12)
_ _ The finite term decays exponentially to zero because of the
where ertﬁ’XZ) erflxg) —erflx) [271’ and we have used the properties of the error function. The asymptotic behavior of
fact that L=a/(a—1). The term in square brackets has the two integrals can be computed with the saddle point

asymptotic behavior method in the same way as Hé4). Both decay asymptoti-
p( pzs) cally ass™*! and the final result is
expl — —
M(L _ 2) Z_bS(eDIZb — &P 2b ’
20 \a-1 T ps p(a_1)|~ 11 1 1 (A16)
(A13) 2 apa—Z Suz—l apa—Z Ta—l’
and it is dominated by the exponential. The result is obtained
by using the asymptotic expansion of the erf function. which coincides with Eq(17).
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